3.180 \(\int \frac{\text{csch}^3(c+d x)}{a+b \sinh ^3(c+d x)} \, dx\)

Optimal. Leaf size=322 \[ \frac{2 b \tanh ^{-1}\left (\frac{\sqrt [3]{b}-\sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^{2/3}+b^{2/3}}}\right )}{3 a^{5/3} d \sqrt{a^{2/3}+b^{2/3}}}+\frac{2 (-1)^{2/3} b \tan ^{-1}\left (\frac{\sqrt [6]{-1} \left (\sqrt [6]{-1} \sqrt [3]{b}+i \sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )\right )}{\sqrt{\sqrt [3]{-1} a^{2/3}-(-1)^{2/3} b^{2/3}}}\right )}{3 a^{5/3} d \sqrt{\sqrt [3]{-1} a^{2/3}-(-1)^{2/3} b^{2/3}}}+\frac{2 (-1)^{2/3} b \tan ^{-1}\left (\frac{\sqrt [6]{-1} \left ((-1)^{5/6} \sqrt [3]{b}+i \sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )\right )}{\sqrt{\sqrt [3]{-1} a^{2/3}-b^{2/3}}}\right )}{3 a^{5/3} d \sqrt{\sqrt [3]{-1} a^{2/3}-b^{2/3}}}+\frac{\tanh ^{-1}(\cosh (c+d x))}{2 a d}-\frac{\coth (c+d x) \text{csch}(c+d x)}{2 a d} \]

[Out]

(2*(-1)^(2/3)*b*ArcTan[((-1)^(1/6)*((-1)^(1/6)*b^(1/3) + I*a^(1/3)*Tanh[(c + d*x)/2]))/Sqrt[(-1)^(1/3)*a^(2/3)
 - (-1)^(2/3)*b^(2/3)]])/(3*a^(5/3)*Sqrt[(-1)^(1/3)*a^(2/3) - (-1)^(2/3)*b^(2/3)]*d) + (2*(-1)^(2/3)*b*ArcTan[
((-1)^(1/6)*((-1)^(5/6)*b^(1/3) + I*a^(1/3)*Tanh[(c + d*x)/2]))/Sqrt[(-1)^(1/3)*a^(2/3) - b^(2/3)]])/(3*a^(5/3
)*Sqrt[(-1)^(1/3)*a^(2/3) - b^(2/3)]*d) + ArcTanh[Cosh[c + d*x]]/(2*a*d) + (2*b*ArcTanh[(b^(1/3) - a^(1/3)*Tan
h[(c + d*x)/2])/Sqrt[a^(2/3) + b^(2/3)]])/(3*a^(5/3)*Sqrt[a^(2/3) + b^(2/3)]*d) - (Coth[c + d*x]*Csch[c + d*x]
)/(2*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.457326, antiderivative size = 322, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 7, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.304, Rules used = {3220, 3768, 3770, 3213, 2660, 618, 204} \[ \frac{2 b \tanh ^{-1}\left (\frac{\sqrt [3]{b}-\sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^{2/3}+b^{2/3}}}\right )}{3 a^{5/3} d \sqrt{a^{2/3}+b^{2/3}}}+\frac{2 (-1)^{2/3} b \tan ^{-1}\left (\frac{\sqrt [6]{-1} \left (\sqrt [6]{-1} \sqrt [3]{b}+i \sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )\right )}{\sqrt{\sqrt [3]{-1} a^{2/3}-(-1)^{2/3} b^{2/3}}}\right )}{3 a^{5/3} d \sqrt{\sqrt [3]{-1} a^{2/3}-(-1)^{2/3} b^{2/3}}}+\frac{2 (-1)^{2/3} b \tan ^{-1}\left (\frac{\sqrt [6]{-1} \left ((-1)^{5/6} \sqrt [3]{b}+i \sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )\right )}{\sqrt{\sqrt [3]{-1} a^{2/3}-b^{2/3}}}\right )}{3 a^{5/3} d \sqrt{\sqrt [3]{-1} a^{2/3}-b^{2/3}}}+\frac{\tanh ^{-1}(\cosh (c+d x))}{2 a d}-\frac{\coth (c+d x) \text{csch}(c+d x)}{2 a d} \]

Antiderivative was successfully verified.

[In]

Int[Csch[c + d*x]^3/(a + b*Sinh[c + d*x]^3),x]

[Out]

(2*(-1)^(2/3)*b*ArcTan[((-1)^(1/6)*((-1)^(1/6)*b^(1/3) + I*a^(1/3)*Tanh[(c + d*x)/2]))/Sqrt[(-1)^(1/3)*a^(2/3)
 - (-1)^(2/3)*b^(2/3)]])/(3*a^(5/3)*Sqrt[(-1)^(1/3)*a^(2/3) - (-1)^(2/3)*b^(2/3)]*d) + (2*(-1)^(2/3)*b*ArcTan[
((-1)^(1/6)*((-1)^(5/6)*b^(1/3) + I*a^(1/3)*Tanh[(c + d*x)/2]))/Sqrt[(-1)^(1/3)*a^(2/3) - b^(2/3)]])/(3*a^(5/3
)*Sqrt[(-1)^(1/3)*a^(2/3) - b^(2/3)]*d) + ArcTanh[Cosh[c + d*x]]/(2*a*d) + (2*b*ArcTanh[(b^(1/3) - a^(1/3)*Tan
h[(c + d*x)/2])/Sqrt[a^(2/3) + b^(2/3)]])/(3*a^(5/3)*Sqrt[a^(2/3) + b^(2/3)]*d) - (Coth[c + d*x]*Csch[c + d*x]
)/(2*a*d)

Rule 3220

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.), x_Symbol] :> Int[ExpandTr
ig[sin[e + f*x]^m*(a + b*sin[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, e, f}, x] && IntegersQ[m, p] && (EqQ[n, 4]
|| GtQ[p, 0] || (EqQ[p, -1] && IntegerQ[n]))

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3213

Int[((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> Int[ExpandTrig[(a + b*(c*sin[e + f*
x])^n)^p, x], x] /; FreeQ[{a, b, c, e, f, n}, x] && (IGtQ[p, 0] || (EqQ[p, -1] && IntegerQ[n]))

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\text{csch}^3(c+d x)}{a+b \sinh ^3(c+d x)} \, dx &=-\left (i \int \left (\frac{i \text{csch}^3(c+d x)}{a}-\frac{i b}{a \left (a+b \sinh ^3(c+d x)\right )}\right ) \, dx\right )\\ &=\frac{\int \text{csch}^3(c+d x) \, dx}{a}-\frac{b \int \frac{1}{a+b \sinh ^3(c+d x)} \, dx}{a}\\ &=-\frac{\coth (c+d x) \text{csch}(c+d x)}{2 a d}-\frac{\int \text{csch}(c+d x) \, dx}{2 a}-\frac{b \int \left (\frac{\sqrt [6]{-1}}{3 a^{2/3} \left (\sqrt [6]{-1} \sqrt [3]{a}-i \sqrt [3]{b} \sinh (c+d x)\right )}+\frac{\sqrt [6]{-1}}{3 a^{2/3} \left (\sqrt [6]{-1} \sqrt [3]{a}+\sqrt [6]{-1} \sqrt [3]{b} \sinh (c+d x)\right )}+\frac{\sqrt [6]{-1}}{3 a^{2/3} \left (\sqrt [6]{-1} \sqrt [3]{a}+(-1)^{5/6} \sqrt [3]{b} \sinh (c+d x)\right )}\right ) \, dx}{a}\\ &=\frac{\tanh ^{-1}(\cosh (c+d x))}{2 a d}-\frac{\coth (c+d x) \text{csch}(c+d x)}{2 a d}-\frac{\left (\sqrt [6]{-1} b\right ) \int \frac{1}{\sqrt [6]{-1} \sqrt [3]{a}-i \sqrt [3]{b} \sinh (c+d x)} \, dx}{3 a^{5/3}}-\frac{\left (\sqrt [6]{-1} b\right ) \int \frac{1}{\sqrt [6]{-1} \sqrt [3]{a}+\sqrt [6]{-1} \sqrt [3]{b} \sinh (c+d x)} \, dx}{3 a^{5/3}}-\frac{\left (\sqrt [6]{-1} b\right ) \int \frac{1}{\sqrt [6]{-1} \sqrt [3]{a}+(-1)^{5/6} \sqrt [3]{b} \sinh (c+d x)} \, dx}{3 a^{5/3}}\\ &=\frac{\tanh ^{-1}(\cosh (c+d x))}{2 a d}-\frac{\coth (c+d x) \text{csch}(c+d x)}{2 a d}+\frac{\left (2 (-1)^{2/3} b\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt [6]{-1} \sqrt [3]{a}-2 \sqrt [3]{b} x+\sqrt [6]{-1} \sqrt [3]{a} x^2} \, dx,x,\tan \left (\frac{1}{2} (i c+i d x)\right )\right )}{3 a^{5/3} d}+\frac{\left (2 (-1)^{2/3} b\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt [6]{-1} \sqrt [3]{a}+2 \sqrt [3]{-1} \sqrt [3]{b} x+\sqrt [6]{-1} \sqrt [3]{a} x^2} \, dx,x,\tan \left (\frac{1}{2} (i c+i d x)\right )\right )}{3 a^{5/3} d}+\frac{\left (2 (-1)^{2/3} b\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt [6]{-1} \sqrt [3]{a}-2 (-1)^{2/3} \sqrt [3]{b} x+\sqrt [6]{-1} \sqrt [3]{a} x^2} \, dx,x,\tan \left (\frac{1}{2} (i c+i d x)\right )\right )}{3 a^{5/3} d}\\ &=\frac{\tanh ^{-1}(\cosh (c+d x))}{2 a d}-\frac{\coth (c+d x) \text{csch}(c+d x)}{2 a d}-\frac{\left (4 (-1)^{2/3} b\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (\sqrt [3]{-1} a^{2/3}-b^{2/3}\right )-x^2} \, dx,x,-2 \sqrt [3]{b}+2 \sqrt [6]{-1} \sqrt [3]{a} \tan \left (\frac{1}{2} (i c+i d x)\right )\right )}{3 a^{5/3} d}-\frac{\left (4 (-1)^{2/3} b\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \sqrt [3]{-1} \left (a^{2/3}+b^{2/3}\right )-x^2} \, dx,x,-2 (-1)^{2/3} \sqrt [3]{b}+2 \sqrt [6]{-1} \sqrt [3]{a} \tan \left (\frac{1}{2} (i c+i d x)\right )\right )}{3 a^{5/3} d}-\frac{\left (4 (-1)^{2/3} b\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (\sqrt [3]{-1} a^{2/3}-(-1)^{2/3} b^{2/3}\right )-x^2} \, dx,x,2 \sqrt [3]{-1} \sqrt [3]{b}+2 \sqrt [6]{-1} \sqrt [3]{a} \tan \left (\frac{1}{2} (i c+i d x)\right )\right )}{3 a^{5/3} d}\\ &=-\frac{2 (-1)^{2/3} b \tan ^{-1}\left (\frac{\sqrt [3]{b}-(-1)^{2/3} \sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )}{\sqrt{\sqrt [3]{-1} a^{2/3}-b^{2/3}}}\right )}{3 a^{5/3} \sqrt{\sqrt [3]{-1} a^{2/3}-b^{2/3}} d}+\frac{2 (-1)^{2/3} b \tan ^{-1}\left (\frac{\sqrt [3]{-1} \sqrt [3]{b}+(-1)^{2/3} \sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )}{\sqrt{\sqrt [3]{-1} a^{2/3}-(-1)^{2/3} b^{2/3}}}\right )}{3 a^{5/3} \sqrt{\sqrt [3]{-1} a^{2/3}-(-1)^{2/3} b^{2/3}} d}+\frac{\tanh ^{-1}(\cosh (c+d x))}{2 a d}+\frac{2 b \tanh ^{-1}\left (\frac{\sqrt [3]{b}-\sqrt [3]{a} \tanh \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^{2/3}+b^{2/3}}}\right )}{3 a^{5/3} \sqrt{a^{2/3}+b^{2/3}} d}-\frac{\coth (c+d x) \text{csch}(c+d x)}{2 a d}\\ \end{align*}

Mathematica [C]  time = 0.497428, size = 178, normalized size = 0.55 \[ -\frac{16 b \text{RootSum}\left [8 \text{$\#$1}^3 a+\text{$\#$1}^6 b-3 \text{$\#$1}^4 b+3 \text{$\#$1}^2 b-b\& ,\frac{2 \text{$\#$1} \log \left (-\text{$\#$1} \sinh \left (\frac{1}{2} (c+d x)\right )+\text{$\#$1} \cosh \left (\frac{1}{2} (c+d x)\right )-\sinh \left (\frac{1}{2} (c+d x)\right )-\cosh \left (\frac{1}{2} (c+d x)\right )\right )+\text{$\#$1} c+\text{$\#$1} d x}{\text{$\#$1}^4 b-2 \text{$\#$1}^2 b+4 \text{$\#$1} a+b}\& \right ]+3 \left (\text{csch}^2\left (\frac{1}{2} (c+d x)\right )+\text{sech}^2\left (\frac{1}{2} (c+d x)\right )+4 \log \left (\tanh \left (\frac{1}{2} (c+d x)\right )\right )\right )}{24 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[Csch[c + d*x]^3/(a + b*Sinh[c + d*x]^3),x]

[Out]

-(16*b*RootSum[-b + 3*b*#1^2 + 8*a*#1^3 - 3*b*#1^4 + b*#1^6 & , (c*#1 + d*x*#1 + 2*Log[-Cosh[(c + d*x)/2] - Si
nh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1)/(b + 4*a*#1 - 2*b*#1^2 + b*#1^4) & ] + 3*(C
sch[(c + d*x)/2]^2 + 4*Log[Tanh[(c + d*x)/2]] + Sech[(c + d*x)/2]^2))/(24*a*d)

________________________________________________________________________________________

Maple [C]  time = 0.089, size = 146, normalized size = 0.5 \begin{align*}{\frac{1}{8\,da} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}-{\frac{1}{8\,da} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-2}}-{\frac{1}{2\,da}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }+{\frac{b}{3\,da}\sum _{{\it \_R}={\it RootOf} \left ( a{{\it \_Z}}^{6}-3\,a{{\it \_Z}}^{4}-8\,b{{\it \_Z}}^{3}+3\,a{{\it \_Z}}^{2}-a \right ) }{\frac{{{\it \_R}}^{4}-2\,{{\it \_R}}^{2}+1}{{{\it \_R}}^{5}a-2\,{{\it \_R}}^{3}a-4\,{{\it \_R}}^{2}b+{\it \_R}\,a}\ln \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) -{\it \_R} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csch(d*x+c)^3/(a+b*sinh(d*x+c)^3),x)

[Out]

1/8/d/a*tanh(1/2*d*x+1/2*c)^2-1/8/d/a/tanh(1/2*d*x+1/2*c)^2-1/2/d/a*ln(tanh(1/2*d*x+1/2*c))+1/3/d/a*b*sum((_R^
4-2*_R^2+1)/(_R^5*a-2*_R^3*a-4*_R^2*b+_R*a)*ln(tanh(1/2*d*x+1/2*c)-_R),_R=RootOf(_Z^6*a-3*_Z^4*a-8*_Z^3*b+3*_Z
^2*a-a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -8 \, b \int \frac{e^{\left (3 \, d x + 3 \, c\right )}}{a b e^{\left (6 \, d x + 6 \, c\right )} - 3 \, a b e^{\left (4 \, d x + 4 \, c\right )} + 8 \, a^{2} e^{\left (3 \, d x + 3 \, c\right )} + 3 \, a b e^{\left (2 \, d x + 2 \, c\right )} - a b}\,{d x} - \frac{e^{\left (3 \, d x + 3 \, c\right )} + e^{\left (d x + c\right )}}{a d e^{\left (4 \, d x + 4 \, c\right )} - 2 \, a d e^{\left (2 \, d x + 2 \, c\right )} + a d} + \frac{\log \left ({\left (e^{\left (d x + c\right )} + 1\right )} e^{\left (-c\right )}\right )}{2 \, a d} - \frac{\log \left ({\left (e^{\left (d x + c\right )} - 1\right )} e^{\left (-c\right )}\right )}{2 \, a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^3/(a+b*sinh(d*x+c)^3),x, algorithm="maxima")

[Out]

-8*b*integrate(e^(3*d*x + 3*c)/(a*b*e^(6*d*x + 6*c) - 3*a*b*e^(4*d*x + 4*c) + 8*a^2*e^(3*d*x + 3*c) + 3*a*b*e^
(2*d*x + 2*c) - a*b), x) - (e^(3*d*x + 3*c) + e^(d*x + c))/(a*d*e^(4*d*x + 4*c) - 2*a*d*e^(2*d*x + 2*c) + a*d)
 + 1/2*log((e^(d*x + c) + 1)*e^(-c))/(a*d) - 1/2*log((e^(d*x + c) - 1)*e^(-c))/(a*d)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^3/(a+b*sinh(d*x+c)^3),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)**3/(a+b*sinh(d*x+c)**3),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{csch}\left (d x + c\right )^{3}}{b \sinh \left (d x + c\right )^{3} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^3/(a+b*sinh(d*x+c)^3),x, algorithm="giac")

[Out]

integrate(csch(d*x + c)^3/(b*sinh(d*x + c)^3 + a), x)